
K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1284 | P a g e

Design and Synthesis of a Field Programmable CRC Circuit Architecture

K.V.GANESH*,D.SRI HARI**,M.HEMA***
*(Department of ECE ,JNTUK,KAKINADA)

**(Department of ECE,JNTUA,Anantapur)

* **(Department of ECE,JNTUA,Anantapur)

 ABSTRACT :
The design and implementation of a programmable cyclic

redundancy check (CRC) computation circuit architecture,

suitable for deployment in network related system-on-chips
(SoCs) is presented. The architecture has been designed to be

field reprogrammable so that it is fully flexible in terms of the

polynomial deployed and the input port width. The circuit

includes an embedded configuration controller that has a low

reconfiguration time and hardware cost. The circuit has been

synthesised and mapped to 130-nm UMC standard cell ASIC

technology and is capable of supporting line speeds of 5Gb/s.

keywords— Cyclic redundancy check (CRC), error detection,
field programmable, network processing, reconfigurable

I. INTRODUCTION

Cyclic redundancy check (CRC) is an error detecting code that

is widely used to detect corruption in blocks of data that have

been transmitted or stored. A standalone intellectual property

(IP) core is ideal for accelerating CRC computation in many
network and server applications.Hardware configurability that

will allow unrestricted CRC sizes and polynomials to be

deployed, enables a wide range of network transmission,

storage and security applications to be supported at a low

cost. The cost of chip design continues to increase due to factors

such as high mask and respin costs. Next generation system-on-

chip (SoC) designs are highly expensive and therefore must be

configurable to a range of applications and future proof where

either product updates orprotocol migration can occur. Adding

flexibility through in-field hardware configurability is a key

method that enables the cost of designs to be reduced. In this
paper, we derive a fully field programmable, parallel architecture

for a CRC computation circuit. The objective was to explore a

domain specific programmable architecture capable of

supporting 5 Gb/s line rates at a minimal area cost. The resulting

architecture is

able to support all types and sizes of CRC polynomial, for all

types of protocols and data encryption. Furthermore, the circuit

can handle a variable number of input octets in runtime for byte

orientated variable sized protocols. An embedded self-

reconfiguration controller allows any CRC function to be

configured, while minimizing programming time and

complexity. This paper explores the architecture and functions

of the field programmable CRC computation circuit and

analyses its performance when implemented using standard cell

UMC 130-nmtechnology.

II. CYCLIC REDUNDANCY CHECK

Data integrity is imperative for many network protocols,

especially data-link layer protocols. Techniques using parity

codes and Hamming codes can be used for data verification, but

CRC is the preferred and most efficient method used for

detecting bit errors produced from medium related noise. For

example, Ethernet uses a 32-bit CRC polynomial for error
detection. Data storage is another area where

A. CRC Related Background

A large number of CRC polynomials of various lengths are

Available to use over a range of applications. Reference [2]

investigates a total of 48 polynomials, ranging in length from 3-

to 16-bits, that are suitable for embedded network applications

utilizing CRC error detection. The paper shows how the various

polynomials have been assessed for their ability to detect error
patterns in messages. It shows that for different data word

lengths, different CRC polynomials can be more

suitable than others. This assessment is carried out based on

maximum hamming distances. Similarly [3] investigates a

number of 32-bit CRC polynomials, all suitable for network

applications such as Ethernet and iSCSI.CRC functions have

been widely implemented in software using methods such as

lookup tables [4] and shift and addition [5]. Further research

has investigated hardware architectures that can better exploit

parallelism. The fundamental work on parallel CRC

computation was introduced by Pei in 1992 [6]. Braun [7]

addressed the hardware mapping problem of the parallel CRC
algorithm by introducing a slightly different matrix

computation technique than Pei. Braun incorporated pre- and

post- CRC computation circuits to achieve a 32-bit checksum

word at 450 Mbps using FPGA technology in 1996. [8]

addresses a technique that allows pipelining to increase the

K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1285 | P a g e

circuit speed, independent of the underlying technology.
Reference [9] derives a VLSI implementation of a 32-bit CRC

generator circuit based on Galois field arithmetic and look-

ahead blocks. With an eighth order look-ahead function this

circuit can operate at 100 MHz despite the dated 0.6-micron

technology. The circuits are flexible in terms of the number of

input bits processed at a time, upto 32-bits, but they are

restricted to using one CRC polynomial.

Reference [10] addresses the problem of processing variable

sized packets in parallel by simply duplicating circuits and

multiplexing between multiple custom implementations as

required, i.e., if processing 32 bits and the last cycle of data is
only 8 bits wide then this implementation multiplexes the data

from a 32-bit circuit to an 8-bit circuit. The research details the

VLSI implementation of a CRC-32 circuit for Ethernet. A

standard cell and full custom implementation are presented

using 180- and 350-nm technology respectively, operating at

1.09 GHz and 625 MHz. The circuits presented are highly

customized and targeted for the CRC-32 polynomial selected.

Although they operate very fast, the designs are not flexible or

adaptable as they are intended for a single polynomial.[11]

describes a pipelined and parallel implementation for an

FPGAbased CRC function. The level of parallelism can be

varied between 8- to 32-bits and claims performance results of
1 to 4Gb/s (depending on the level of parallelism selected). Any

polynomial can be selected before synthesis, but not after.[12]

describes the derivation of VHDL code with a generic construct

that allows a designer to synthesise CRC circuits for any

desired polynomial of length up to 32 bits. Word widths of 8,

12, 16, and 32 bits have been analyzed. The research

concentrates on generating code in a generic style that includes

parallelism in its structure, which is based on the linear

feedback shift register (LFSR) presented by Pei. While this

generic description is useful in terms of design reusability, it is

only configurable pre synthesis, after which the hardware is
fixed and the CRC function is not configurable. [13] uses a

recursive mathematical formula to derive parallel CRC circuits

that can be generated automatically. The examples use

MATLAB code to generate the VHDL code for the circuit. The

polynomial and number of bits to be processed in parallel can

be specified separately. The method is flexible and is likely to

save both time and cost in the design phase, yet like the other

circuits, this one will be fixed to a single polynomial as the

circuit itself is inflexible post- synthesis. Reference [14] is a

commercially available core that operates on FPGA. Again, this

uses a fixed CRC polynomial that cannot be reconfigured after

deployment. The CRC-32 core is able to support 10/40 Gb/s
line speeds by utilizing 64-/256-bit data buses, respectively.

It is the wide data buses that allow this performance to be

achieved. However, using wide input buses adds complexity to

the CRC calculation where the end of a word does not fully fill

the input bus. If the end of a word is 16-bits wide then the CRC

must be computed for 16 bits, this cannot be done using a 32-

bit input configuration. Reference [15] presents a software

implementation of the iSCSI protocol that includes
implementing CRC error detection, which is recognized

as the key bottleneck in the system. The overall implementation

operates on a 1.7 GHz Pentium M processor, which supports

3.6 Gb/s. None of the aforementioned state-of-the-art options

support full in-field configuration flexibility at high speed

specifically on hardware. Some allow flexibility in the design

phase and others offer very high line-speed performance,

however none offer high line-speed with full flexibility, such as

the support of different data-path widths and CRC generator

polynomials. Although the software option [15] is likely to be

very flexible, it comes at the expense of a Pentium processor.
 The next section outlines the derivation of a CRC circuit

Implementation that fulfils the outlined flexibility criteria.

III. DERIVATION AND IMPLEMENTATION OF

THE FIELD PROGRAMMABLE CRC

COMPUTATION CIRCUIT

CRC is a polynomial-based block coding method for detecting

errors in blocks or frames of data. A set of check digits is

computed for each frame scheduled for transmission over a

medium that may introduce error and is appended to its end..

The computed check digits are known as the frame check

sequence (FCS). A CRC value is calculated as a remainder of

the modulo-2 division of the original transmitted data with a

specific CRC generator polynomial. For example, Ethernet uses

the 32-bit polynomial value

 G(x) = 1 + x + x2 + x4 + x5 + x7 + x9 + x10 + x11 + x12 + x16

+x22

 + x23 +x26 + x32

To find the FCS, first a number of zeroes equal to the number

of FCS digits to be generated are appended to the message

M(x). This is equivalent to multiplying M(x) by 2n, where n is

the number of FCS digits. This value is then divided by the

generator polynomial G(x), which contains one more digit than
the FCS. The division uses

modulo-2 arithmetic, where each digit is independent of its

neighbor and numbers are not carried or borrowed, thus

addition and subtraction are performed via an exclusive-OR

(XOR) function. The remainder R(x) is appended to the end of

the message before transmission. At the receiver, the message

plus the FCS is divided by the same polynomial.

If the remainder is zero then it can be assumed that no error has

Occurred The field programmable CRC design is based on the

fundamentals established in [6], which derives the_ matrix (1)

that effectively forms the logic array of the CRC calculator

circuit. Due to space restrictionsthe full derivation is not
included here, but can be found in the reference

K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and Applications (IJERA)

ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1286 | P a g e

and G is the Generator polynomial (an example
would be the polynomial used for Ethernet)

 G = [g(0) g(1) g(2)----------g(k-1)]

 Fig.1 Field programmable CRC architecture.

 Fig.2. Programmable CRC array cell.

 Fig.3. D matrix row calculation, first loop.

K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1287 | P a g e

Each value in G is multiplied (ANDed) with the

corresponding value in T. The results are XORed

together, producing a D matrix of 0’s or 1’s. The

position of the 1’s in D determines the position of

XOR gates within the logic array while is the width of

the input port in bits. Enabling programmability for

parallel CRC computation requires the D matrix to be

configurable for all known generator polynomials

G(x)) Furthermore, configuration logic for the

configurable XOR array is required to adjust the input

and CRC sizes.
Fig. 1 shows a diagram illustrating the architecture of

the fully programmable, reconfigurable CRC circuit.

The circuit is composed of six main components, the

programmable input and feedback multiplexers, the

configurable XOR array, the array configuration

circuit and the CRC configuration processor. The top

of the diagram shows the logic associated with the

CRC cell array. The input data enters the array down

the columns and the outputs are formed along the

rows. The current CRC value is held in a register at the

array output, which is fed back and XORed with the

input data of the next clock cycle as part of the CRC
computation process. The outputs are then stored in

the registers for the next clock cycle

The CRC configuration parameters are passed via a

microprocessorinterface. The desired CRC

polynomial��__and the input port size a restored in
registers. By selecting a signal Generate Matrix, a

processis initiated that computes the configuration data

and configures the CRC cell array with the required

data. The configuration circuitry Computes and

configures one row of data every clock cycle. This

reduces the memory required since the calculation of

each row of the _ matrix is based on the result of the

calculation of the previous row. The configuration data
is broadcast to every column of the array, with one

column enabled for configuration at a time, via one-

hot encoding using a counter. When the CRC cells are

fully configured, the configuration processor is not

used. The Port Size Configure and CRC Size

Configure signals control a set of multiplexers that

enable/disable input and CRC feedback data to cater

for the size of the CRC polynomial and the size of the

input port. The Port Size Configure signal is also

responsible for reconfiguring the circuit to process

various input word sizes, e.g., if the port size is

configured as 32-bit and the last cycle of the payload
data contains only 16-bits to be processed, the Port

Size Configure signal; switches input bits 16 to 31 to

the ―0‖ input of each multiplexer; switches the bottom

16 multiplexers to the previous CRC data input at the

left-hand side of the array and finally routes bits 16 to

31 of the previous CRC data to rows 16 to 31 of the

array. The configurable XOR array is comprised of

interconnected cells,

corresponding to the _ matrix. Each cell can be configured as

an XOR gate (a ―1‖ in _), or as a basic input to output

connection (a ―0‖ in)Fig. 3. D -matrix row calculation, first

loop. D). Fig. 2 shows a diagram of one of the field

programmable elements that facilitate this function in the

array. The data-path can be configured so that the output will

XOR the two inputs, or simply output Input
1. The control-path contains a configuration register which

selects the data-path function and is programmed via the

Config Data input when the Config Enable input is set high.

The computation of the � matrix is an iterative process,
where the computation of each row is based on the result

from the previous row.

Therefore, one row is computed every clock cycle and

configuring the whole matrix requires 33 clock cycles. This

is the minimum time possible due to the feedback required.

Fig. 3 show the logic used to compute a� matrix row in one
clock cycle for an example 4-bit CRC polynomial, using the

_ matrix data and the current � matrix row signal. The

diagram shows how a single bit of the � matrix is computed
on the first loop using the rows and columns shaded grey in

the � and _ matrices. Subsequent loops progress through the
remaining rows and columns. For a CRC-64 or higher, two or

more of the data-path circuits (top of Fig. 1) are combined in

a diagonal cascade with additional feedback wiring, so that

column and row 0 of the second circuit become column and

row 32 of the CRC-64. Similarly for circuits smaller than 32-

bit, e.g., 8-bit, the XOR array is configured so that four CRC-

8’s run diagonally from the top left. The XOR array and
wiring is used to connect the four blocks together with the

routing necessary to compute the CRC-8’s. This means 32-

bits can be calculated in parallel for all CRC sizes and all

CRC sizes support the same line-speed. Both the

programmable architecture and an optimised implementation

of the Ethernet CRC-32 polynomial were synthesized for the

Altera Stratix II FPGA, to allow the cost of full

programmability to be established. The results showed that

the programmable circuit operated\ at 117 MHz, while the

Ethernet polynomial circuit operated at 233 MHz, nearly

twice the frequency. The increase in area cost was

approximately 700%, which is due to the introduction of
feedback logic, the configurable array and the

reconfiguration controller. Overall this is a significant

increase in hardware, but the circuit now has significantly

improved capabilities to operate an extensive range of CRC

polynomials and widths instead of just one.

K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1288 | P a g e

Fig.4. Field programmable CRC circuit—silicon

layout (UMC 130 nm).

IV. SYNTHESIS RESULTS AND

PERFORMANCE ANALYSIS

The circuit has been described in VHDL and synthesised for

a 32 * 32 cell array using Synopsis Physical Compiler and

Cadence SoC Encounter EDAtools. The post layout synthesis

results generated using UMC 130-nm technology libraries are
shown in Table I. Fig. 4 shows the circuit layout. Table II

compares the circuit with other designs included in Section

II. The flexibility of [12]–[14] is limited to configuration

options in the design phase but the circuits themselves are not

reprogrammable. [10] allows flexibility by multiplexing

between predefined CRC circuits, but does not allow full

reconfigurability. [15] utilizes software, which is likely to be

fully reconfigurable in-field, however this come at the rather

high expense of operating on a Pentium processor. On their

1.7 GHz test-bench, the CRC computation used 40%–50% of

the processor overhead, which also represents a high cost in

terms of power consumption. Given that CRC computation

can account for 29% of the total computational cost in

storage area networks [16], the power dissipation of the field

programmable CRC circuit, which is less than 6 mW, can be

considered very low. Unfortunately, power figures for the
other references are not available forcomparison. Although it

is difficult to directly compare performance and

areaparameters for different technologies, some valid

comparisons can be made. Comparing [13] with our initial

Ethernet polynomial implementation on FPGA, the number

of LUTs used are of the same order, soit can be expected that

the same trade-offs that apply in our test implementations can

also be directly applied here. Furthermore, to add flexibility

to [13] would require taking the FPGA offline for

reconfiguration, whereas the field programmable CRC circuit

can be reconfigured in less than 1 _s, even on FPGA. In

terms of area, the circuit of [10] is approximately 20 times
larger than the programmable CRC circuit, with a similar

throughout speed.

Notes:

[10] Normally 32-bit parallelism, selects 8, 16 or 24-bit

if last word of data is not 32-bits.[13] 350 nm platform

example implementation: 4.38 Gb/s when utilizing 32-

bits in parallel.[14] 64-bit/256-bit parallelism.[15]

Specifically supports iSCSI at this line speed, 1.7 GHz

Pentium M processor.The difference in area cost could

be expected to be around 7:1 purely on account of the

different process technologies (350/130 nm). The

difference in area cost is therefore comparatively
insignificant, given that the programmable CRC has

K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1289 | P a g e

significantly more flexibility. The total area of 0.15

mm� is quite small and allows the CRC circuit to be
deployed as an add-on instruction in an NPU data-path

or as a standalone CRC accelerator IP core for

dedicated network processing SoCs or ASSPs. For

these in particular, flexibility, area cost, performance

and power dissipation are the primary design

considerations, making the proposed CRC architecture

an ideal offload engine.In term of throughput

performance, the field programmable CRC circuit, at

4.92 Gb/s, outperforms the only other truly

reconfigurable option [15] which operates at 3.6 Gb/s.

The field programmable CRC circuit also has the
advantage of a much less costly technology platform,

0.15 mm� on 130-nm standard cell technology,
compared to the Pentium used by [15]. The circuit we

have implemented does not support the high line speeds

of [14] because this custom circuit (which is not

reprogrammable) uses much higher levels of

parallelism (64/256-bit). However there is a correlation

in results, since a simplecomparison shows that their

64-bit implementation is both double thebus width and

double the line rate of the reconfigurable CRC circuit—

assuming doubling our level of parallelism from 32- to

64-bit would also double the supported line speed, the

result is 9.84 Gb/s compared to 10 Gb/s. Given all these

considerations, the throughput of the field
programmable CRC circuit compares favorably with

the state of the art. Apart from the software/processor

design, none of the other architectures offer a solution

that is flexible in terms of supporting all possible

combinations of polynomials with a wide variety of

port sizes. Objectives such as high speed or low cost

have been considered in these implementations, but

flexibility has not been fully addressed. Some present a

degree of flexibility, but only in terms of preselecting

variables in the design phase. Considering that versatile

network processors have to address a wide range of
applications, including frame packet processing,

security processing and storage related functions; the

alternative options presented give limited flexibility to

support all these applications.

V. CONCLUSION

This paper presents the design and implementation of a novel

field programmable CRC computation circuit that is an ideal
IP core for VLSI deployment. The aim was to explore an

architecture where all the CRC parameters were fully

programmable. This was achieved by deriving an array of

processing cells to implement a matrix based computation

technique. The circuit uses an embedded configuration

controller designed for both standalone and runtime

programmability of the CRC circuit. This enables different

CRC polynomials and I/O port and processing data-path

widths to be deployed. The architecture is also generic in its

design and can be scaled to 64-, 128-, or 256-bits in the
datapath, enabling support of throughput rates up to 40 Gb/s

at 256-bits. The tradeoff between flexibility, performance and

cost has been taken further than those enabled by traditional

heterogeneous architectures based on microprocessor, DSP

and FPGA technology. Domain specific and field

programmable processing cores, such as the presented CRC

circuit, provide tailored flexibility while allowing high

performance and low hardware cost. In conjunction with an

embedded custom specific configuration controller, the

programming task of the logic array is reduced to specific

high-level instructions, executed by setting parameter

registers. Complex logic synthesis and place and route
functions are not required to programme the circuit, as is the

case with traditional FPGA technologies, consequently real

runtime programmability is possible with a much reduced

reconfiguration time and cost. Embedded domain specific

programmable architectures present an opportunity for

enhancing SoC designs that face performance and flexibility

issues, as they strive to meet emerging design challenges

imposed by ICT convergence. It is further anticipated that a

physical oriented design methodology, such as a data-path

compiler [17], can be used to optimize the regular structure

of the programmable cell array, which could significantly
increase the operational frequency while maintaining a low

hardware cost. Such an optimized circuit represents an

attractive hard macro for environments requiring low cost

hardware flexibility, and in emerging areas such as iSCSI-

based SANs, where the flexibility to adopt emerging

protocols offers a key advantage to vendors.

K.V.GANESH,D.SRI HARI,M.HEMA/International Journal of Engineering Research and

Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 4, pp.1284-1290

1290 | P a g e

REFERENCES

[1] .J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and

E. Zeidner,

 ― RFC 3720—Internet Small Computer Systems Interface

(iSCSI),‖

 RFC 3720, Apr. 2004.

[2] . P. Koopman and T. Charkravarty, ―Cyclic Redundancy

Code (CRC)
 polynomial selection for embedded networks,‖ in Proc.

DSN, pp.

 145–154.

[3] P. Koopman, ―32-bit cyclic redundancy codes for

internet applications,‖

 in Proc. DSN, pp. 459–472.

[4] D. Sarwate, ―Computation of cyclic redundancy checks

via table lookup,‖

 Commun. ACM, vol. 31, no. 8, pp. 1008–1013, Aug.

1988.

[5] D. Feldmeier, ―Fast software implementation of error

correcting codes,‖ IEEE Trans. Network., vol. 3, no. 6, pp.

640–651, Dec. 1995.

[6] T. Bi-Pei and C. Zukowski, ―High-

speed parallel CRC circuits in

 VLSI,‖ IEEE Trans. Commun., vol. 40,

no. 4, pp. 653–657, Apr. 1992.

[7] M. Braun, J. Freidich, T. Grun, and J.

Lembert, ―Parallel CRC computation

 in FPGAs,‖ in Proc. Workshop Field
Program. Logic Appl.,

 1996, pp. 156–165.

[8] J. H. Derby, ―High-speed CRC

computation using state-space

transformations,‖ in Proc. Globecom, Nov.

2001, pp. 166–170.

[9] M.-D. Shieh, M.-H. Sheu, C.-H. Chen,

and H.-F. Lo, ―A systematic

 approach for parallel CRC

computations,‖ J. Inf. Sci. Eng., vol. 17, pp.

 445–461, 2001.

[10] .T. Henriksson and D. Liu,

―Implementation of fast CRC calculation,‖

in Proc. ASP-DAC, 2003, pp. 563–564.

[11] .F. Monteiro, A. Dandache, A. M’sir,

and B. Lepley,

[12] .M. Sprachmann, ―Automatic

generation of parallel CRC circuits,‖

 IEEE Des. Test Comput., vol. 18, no.

3, pp. 108–114, May/Jun. 2001.

[13] G. Campobello, M. Russo, and G.

Patanè, ―Parallel CRC realization,‖

 IEEE Trans. Comput., vol. 52, no. 10,
pp. 1312–1319, Oct. 2003.

[14] Sarance Technologies, Ottawa, ON,

Canada, ―CRC-32 for 10 Gbps/

 OC192 and 40 Gbps/OC768 Systems,‖

2006. [Online]. Available:

 [15] A. Joglekar, M. Kounavis, and F.

Berry, ―A scalable and high performance

 software iSCSI implementation,‖ in

Proc. USENIX FAST, 2005,

 pp. 267–280.

[16] A. Crouch, ―Technology developments
favor IP storage growth,‖ Communications

 Technology Lab, Intel, Apr. 2005.

[Online]. Available:

 [17] O. Weiss, M. Gansen, and T. Noll, ―A

flexible datapath generator for

 physical oriented design,‖ in Proc.

ESSCIRC, Villach, Sep. 2001, pp.

