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 ABSTRACT : 
The design and implementation of a programmable cyclic 

redundancy check (CRC) computation circuit architecture, 

suitable for deployment in network related system-on-chips 
(SoCs) is presented. The architecture has been designed to be 

field reprogrammable so that it is fully flexible in terms of the 

polynomial deployed and the input port width. The circuit 

includes an embedded configuration controller that has a low 

reconfiguration time and hardware cost. The circuit has been 

synthesised and mapped to 130-nm UMC standard cell ASIC 

technology and is capable of supporting line speeds of  5Gb/s.  

 

keywords— Cyclic redundancy check (CRC), error detection, 
field programmable, network processing, reconfigurable 

 

 

I. INTRODUCTION 
 

Cyclic redundancy check (CRC) is an error detecting code that 

is widely used to detect corruption in blocks of data that have 

been transmitted or stored. A standalone intellectual property 

(IP) core is ideal for accelerating CRC computation in many 
network and server applications.Hardware configurability that 

will allow unrestricted CRC sizes and polynomials to be 

deployed, enables a wide range of network transmission, 

storage and security applications to be supported at a low 

cost. The cost of chip design continues to increase due to factors 

such as high mask and  respin  costs. Next generation system-on-

chip (SoC) designs are highly expensive and therefore must be 

configurable to a range of applications and future proof where 

either product updates orprotocol migration can occur. Adding 

flexibility through in-field hardware configurability is a key 

method that enables the cost of designs to be reduced. In this 
paper, we derive a fully field programmable, parallel architecture 

for a CRC computation circuit. The objective was to explore a 

domain specific programmable architecture capable of 

supporting 5 Gb/s line rates at a minimal area cost. The resulting 

architecture is 

able to support all types and sizes of CRC polynomial, for all 

types of protocols and data encryption. Furthermore, the circuit 

can handle a variable number of input octets in runtime for byte 

orientated variable sized protocols. An embedded self-

reconfiguration controller allows any CRC function to be  

 

configured, while minimizing programming time and 

complexity. This paper explores the architecture and functions 

of the field programmable CRC computation circuit and 

analyses its performance when implemented using standard cell 

UMC  130-nmtechnology. 
 

II. CYCLIC REDUNDANCY CHECK 
 

Data integrity is imperative for many network protocols, 

especially data-link layer protocols. Techniques using parity 

codes and Hamming codes can be used for data verification, but 

CRC is the preferred and most efficient method used for 

detecting bit errors produced from medium related noise. For 

example, Ethernet uses a 32-bit CRC polynomial for error 
detection. Data storage is another area where 

 

 

A. CRC Related Background 

 

A large number of CRC polynomials of various lengths are  

Available to use over a range of applications. Reference [2] 

investigates a total of 48 polynomials, ranging in length from 3- 

to 16-bits, that are suitable for embedded network applications 

utilizing CRC error detection. The paper shows how the various 

polynomials have been assessed for their ability to detect error 
patterns in messages. It shows that for different data word 

lengths, different CRC polynomials can be more 

suitable than others. This assessment is carried out based on 

maximum hamming distances. Similarly [3] investigates a 

number of 32-bit CRC polynomials, all suitable for network 

applications such as Ethernet and iSCSI.CRC functions have 

been widely implemented in software using methods such as 

lookup tables [4] and shift and addition [5]. Further research 

has investigated hardware architectures that can better exploit 

parallelism. The fundamental work on parallel CRC 

computation was introduced by Pei in 1992 [6]. Braun [7] 

addressed the hardware  mapping problem of the parallel CRC 
algorithm by introducing a slightly different matrix 

computation technique than Pei. Braun incorporated pre- and 

post- CRC computation circuits to achieve a 32-bit checksum 

word at 450 Mbps using FPGA technology in 1996. [8] 

addresses a technique that allows pipelining to increase the  
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circuit speed, independent of the underlying technology. 
Reference [9] derives a VLSI implementation of a 32-bit CRC 

generator circuit based on Galois field arithmetic and look-

ahead blocks. With an eighth order look-ahead function this 

circuit can operate at 100 MHz despite the dated 0.6-micron 

technology. The circuits are flexible in terms of the number of 

input bits processed at a time, upto 32-bits, but they are 

restricted to using one CRC polynomial. 

Reference [10] addresses the problem of processing variable 

sized packets in parallel by simply duplicating circuits and 

multiplexing between multiple  custom implementations as 

required, i.e., if processing 32 bits and the last cycle of data is 
only 8 bits wide then this implementation multiplexes the data 

from a 32-bit circuit to an 8-bit circuit. The research details the 

VLSI implementation of a CRC-32 circuit for Ethernet. A 

standard cell and full custom implementation are presented 

using 180- and 350-nm technology respectively, operating at 

1.09 GHz and 625 MHz. The circuits presented are highly 

customized and targeted for the CRC-32 polynomial selected. 

Although they operate very fast, the designs are not flexible or 

adaptable as they are intended for a single polynomial.[11] 

describes a pipelined and parallel implementation for an 

FPGAbased CRC function. The level of parallelism can be 

varied between 8- to 32-bits and claims performance results of 
1 to 4Gb/s (depending on the level of parallelism selected). Any 

polynomial can be selected before synthesis, but not after.[12] 

describes the derivation of VHDL code with a generic construct 

that allows a designer to synthesise CRC circuits for any 

desired polynomial of length up to 32 bits. Word widths of 8, 

12, 16, and 32 bits have been analyzed. The research 

concentrates on generating code in a generic style that includes 

parallelism in its structure, which is based on the linear 

feedback shift register (LFSR) presented by Pei. While this 

generic description is useful in terms of design reusability, it is 

only configurable pre synthesis, after which the hardware is 
fixed and the CRC function is not configurable. [13] uses a 

recursive  mathematical formula to derive parallel CRC circuits 

that can be generated automatically. The examples use 

MATLAB code to generate the VHDL code for the circuit. The 

polynomial and number of bits to be processed in parallel can 

be specified separately. The method is flexible and is likely to 

save both time and cost in the design phase, yet like the other 

circuits, this one will be fixed to a single polynomial as the 

circuit itself is inflexible post- synthesis. Reference [14] is a 

commercially available core that operates on FPGA. Again, this 

uses a fixed CRC polynomial that cannot be reconfigured after 

deployment. The CRC-32 core is able to support 10/40 Gb/s 
line speeds by utilizing 64-/256-bit data buses, respectively. 

It is the wide data buses that allow this performance to be 

achieved. However, using wide input buses adds complexity to 

the CRC calculation where the end of a word does not fully fill 

the input bus. If the end of a word is 16-bits wide then the CRC 

must be computed for 16 bits, this cannot be done using a 32-

bit input configuration. Reference [15] presents a software  

 

 

implementation of the iSCSI protocol that includes 
implementing CRC error detection, which is recognized 

as the key bottleneck in the system. The overall implementation 

operates on a 1.7 GHz Pentium M processor, which supports 

3.6 Gb/s. None of the aforementioned state-of-the-art options 

support full in-field configuration flexibility at high speed 

specifically on hardware. Some allow flexibility in the design 

phase and others offer very high line-speed performance, 

however none offer high line-speed with full flexibility, such as 

the support of different data-path widths and CRC generator 

polynomials. Although the software option [15] is likely to be 

very flexible, it comes at the expense of a Pentium processor. 
      The next section outlines the derivation of a CRC circuit  

Implementation that fulfils the outlined flexibility criteria. 

  

III. DERIVATION AND IMPLEMENTATION OF 

THE FIELD  PROGRAMMABLE CRC 

COMPUTATION CIRCUIT 
 

CRC is a polynomial-based block coding method for detecting 

errors in blocks or frames of data. A set of check digits is 

computed for each frame scheduled for transmission over a 

medium that may introduce error and is appended to its end.. 

The computed check digits are known as the frame check 

sequence (FCS). A CRC value is calculated as a remainder of 

the modulo-2 division of the original transmitted data with a 

specific CRC generator polynomial. For example, Ethernet uses 

the 32-bit polynomial value 
 

         G(x) = 1 + x + x2 + x4 + x5 + x7 + x9 + x10 + x11 + x12 + x16 

+x22  

                     

                             + x23 +x26 + x32 

   

To find the FCS, first a number of zeroes equal to the number 

of FCS digits to be generated are appended to the message 

M(x). This is equivalent to multiplying M(x) by 2n, where n  is 

the number of FCS digits. This value is then divided by the 

generator polynomial G(x), which  contains one more digit than 
the FCS. The division uses 

modulo-2 arithmetic, where each digit is independent of its 

neighbor and numbers are not carried or borrowed, thus 

addition and subtraction are performed via an exclusive-OR 

(XOR) function. The remainder R(x) is appended to the end of 

the message before transmission. At the receiver, the message 

plus the FCS is divided by the same polynomial. 

If the remainder is zero then it can be assumed that no error has 

Occurred The field programmable CRC design is based on the 

fundamentals established in [6], which derives the_ matrix (1) 

that effectively forms the logic array of the CRC calculator 

circuit. Due to space restrictionsthe full derivation is not 
included here, but can be found in the reference 
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and G is the Generator polynomial (an example 
would be the polynomial used for Ethernet) 

 

        G = [g(0) g(1) g(2)----------g(k-1)] 

 

 
 
 Fig.1   Field programmable CRC architecture. 

 

 
 

          Fig.2. Programmable  CRC array cell. 

 
 

 

            Fig.3. D matrix row calculation, first loop. 
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Each value in G is multiplied (ANDed) with the 

corresponding value in T. The results are XORed 

together, producing a D matrix of 0’s or 1’s. The 

position of the 1’s in D determines the position of 

XOR gates within the logic array while  is the width of 

the input port in bits. Enabling programmability for 

parallel CRC computation requires the D matrix to be 

configurable for all known generator polynomials 

G(x)) Furthermore, configuration logic for the 

configurable XOR array is required to adjust the input 

and CRC sizes. 
Fig. 1 shows a diagram illustrating the architecture of 

the fully programmable, reconfigurable CRC circuit. 

The circuit is composed of six main components, the 

programmable input and feedback multiplexers, the 

configurable XOR array, the array configuration 

circuit and the CRC configuration processor. The top 

of the diagram shows the logic associated with the 

CRC cell array. The input data enters the array down 

the columns and the outputs are formed along the 

rows. The current CRC value is held in a register at the 

array output, which is fed back and XORed with the 

input data of the next clock cycle as part of the CRC 
computation process. The outputs are then stored in 

the registers for the next clock cycle                                                       

The CRC configuration parameters are passed via a 

microprocessorinterface. The desired CRC 

polynomial��__and the input port size a restored in 
registers. By selecting a signal Generate Matrix, a 

processis initiated that computes the configuration data 

and configures the CRC cell array with the required 

data. The configuration circuitry Computes and 

configures one row of data every clock cycle. This 

reduces the memory required since the calculation of 

each row of the _ matrix is based on the result of the 

calculation of the previous row. The configuration data 
is broadcast to every column of the array, with one 

column enabled for configuration at a time, via one-

hot encoding using a counter. When the CRC cells are 

fully configured, the configuration processor is not 

used. The Port Size Configure and CRC Size 

Configure signals control a set of multiplexers that 

enable/disable input and CRC feedback data to cater 

for the size of the CRC polynomial and the size of the 

input port. The Port Size Configure signal is also 

responsible for reconfiguring the circuit to process 

various input word sizes, e.g., if the port size is 

configured as 32-bit and the last cycle of the payload 
data contains only 16-bits to be processed, the Port 

Size Configure signal; switches input bits 16 to 31 to 

the ―0‖ input of each multiplexer; switches the bottom 

16 multiplexers to the previous CRC data input at the  

 

 

 
left-hand side of the array and finally routes bits 16 to 

31 of the previous CRC data to rows 16 to 31 of the 

array. The configurable XOR array is comprised of 

interconnected cells, 

corresponding to the _ matrix. Each cell can be configured as 

an XOR gate (a ―1‖ in _), or as a basic input to output 

connection (a ―0‖ in )Fig. 3. D -matrix row calculation, first 

loop. D). Fig. 2 shows a diagram of one of the field 

programmable elements that facilitate this function in the 

array. The data-path can be configured so that the output will 

XOR the two inputs, or simply output Input 
1. The control-path contains a configuration register which 

selects the data-path function and is programmed via the 

Config Data input when   the Config Enable input is set high. 

The computation of the � matrix is an iterative process, 
where  the computation of each row is based on the result 

from the previous row. 

Therefore, one row is computed every clock cycle and 

configuring the whole matrix requires 33 clock cycles. This 

is the minimum time possible due to the feedback required. 

Fig. 3 show the logic used to compute a� matrix row in one 
clock cycle for an example 4-bit CRC polynomial, using the 

_ matrix data and the current � matrix row signal. The 

diagram shows how a single bit of the � matrix is computed 
on the first loop using the rows and columns shaded grey in 

the � and _ matrices. Subsequent loops progress through the 
remaining rows and columns. For a CRC-64 or higher, two or 

more of the data-path circuits (top of Fig. 1) are combined in 

a diagonal cascade with additional feedback wiring, so that 

column and row 0 of the second circuit become column and 

row 32 of the CRC-64. Similarly for circuits smaller than 32-

bit, e.g., 8-bit, the XOR array is configured so that four CRC-

8’s run diagonally from the top left. The XOR array and 
wiring is used to connect the four blocks together with the 

routing necessary to compute the CRC-8’s. This means 32-

bits can be calculated in parallel for all CRC sizes and all 

CRC sizes support the same line-speed. Both the 

programmable architecture and an optimised implementation 

of the Ethernet CRC-32 polynomial were synthesized for the 

Altera Stratix II FPGA, to allow the cost of full 

programmability to be established. The results showed that 

the programmable circuit operated\ at 117 MHz, while the 

Ethernet polynomial circuit operated at 233 MHz, nearly 

twice the frequency. The increase in area cost was 

approximately 700%, which is due to the introduction of 
feedback logic, the configurable array and the 

reconfiguration controller. Overall this is a significant 

increase in hardware, but the circuit now has significantly 

improved capabilities to operate an extensive range of CRC 

polynomials and widths instead of just one. 
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Fig.4. Field programmable CRC circuit—silicon 

layout (UMC 130 nm). 

 

 

IV. SYNTHESIS RESULTS AND 

PERFORMANCE ANALYSIS 
 

The circuit has been described in VHDL and synthesised for 

a 32 * 32 cell array using Synopsis Physical Compiler and 

Cadence SoC Encounter EDAtools. The post layout synthesis 

results generated using UMC 130-nm technology libraries are 
shown in Table I. Fig. 4 shows the circuit layout. Table II 

compares the circuit with other designs included in Section 

II. The flexibility of [12]–[14] is limited to configuration 

options in the design phase but the circuits themselves are not 

reprogrammable. [10] allows flexibility by multiplexing  

 

 
between predefined CRC circuits, but does not allow full 

reconfigurability. [15] utilizes software, which is likely to be 

fully reconfigurable in-field, however this come at the rather 

high expense of operating on a Pentium processor. On their 

1.7 GHz test-bench, the CRC computation used 40%–50% of 

the processor overhead, which also represents a high cost in 

terms of power consumption. Given that CRC computation 

can account for 29% of the total computational cost in 

storage area networks [16], the power dissipation of the field 

programmable CRC circuit, which is less than 6 mW, can be 

considered very low. Unfortunately, power figures for the 
other references are not available forcomparison. Although it 

is difficult to directly compare performance and 

areaparameters for different technologies, some valid 

comparisons can be made. Comparing [13] with our initial 

Ethernet polynomial implementation on FPGA, the number 

of LUTs used are of the same order, soit can be expected that 

the same trade-offs that apply in our test implementations can 

also be directly applied here. Furthermore, to add flexibility 

to [13] would require taking the FPGA offline for 

reconfiguration, whereas the field programmable CRC circuit 

can be reconfigured in less than 1 _s, even on FPGA. In 

terms of area, the circuit of [10] is approximately 20 times 
larger than the programmable CRC circuit, with a similar 

throughout speed. 

 

 

 
 

Notes: 

[10] Normally 32-bit parallelism, selects 8, 16 or 24-bit 

if last word of data is not 32-bits.[13] 350 nm platform 

example implementation: 4.38 Gb/s when utilizing 32-

bits in parallel.[14] 64-bit/256-bit parallelism.[15] 

Specifically supports iSCSI at this line speed, 1.7 GHz 

Pentium M processor.The difference in area cost could 

be expected to be around 7:1 purely on account of the 

different process technologies (350/130 nm). The 

difference in area cost is therefore comparatively 
insignificant, given that the programmable CRC has  
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significantly more flexibility. The total area of 0.15 

mm� is quite small and allows the CRC circuit to be 
deployed as an add-on instruction in an NPU data-path 

or as a standalone CRC accelerator IP core for 

dedicated network processing SoCs or ASSPs. For 

these in particular, flexibility, area cost, performance 

and power dissipation are the primary design 

considerations, making the proposed CRC architecture 

an ideal offload engine.In term of throughput 

performance, the field programmable CRC circuit, at 

4.92 Gb/s, outperforms the only other truly 

reconfigurable option [15] which operates at 3.6 Gb/s. 

The field programmable CRC circuit also has the 
advantage of a much less costly technology platform, 

0.15 mm� on 130-nm standard cell technology, 
compared to the Pentium used by [15]. The circuit we 

have implemented does not support the high line speeds 

of [14] because this custom circuit (which is not 

reprogrammable) uses much higher levels of 

parallelism (64/256-bit). However there is a correlation 

in results, since a simplecomparison shows that their 

64-bit implementation is both double thebus width and 

double the line rate of the reconfigurable CRC circuit—

assuming doubling our level of parallelism from 32- to 

64-bit would also double the supported line speed, the 

result is 9.84 Gb/s compared to 10 Gb/s. Given all these 

considerations, the throughput of the field 
programmable CRC circuit compares favorably with 

the state of the art. Apart from the software/processor 

design, none of the other architectures offer a solution 

that is flexible in terms of supporting all possible 

combinations of polynomials with a wide variety of 

port sizes. Objectives such as high speed or low cost 

have been considered in these implementations, but 

flexibility has not been fully addressed. Some present a 

degree of flexibility, but only in terms of preselecting 

variables in the design phase. Considering that versatile 

network processors have to address a wide range of 
applications, including frame packet processing, 

security processing and storage related functions; the 

alternative options presented give limited flexibility to 

support all these applications. 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 
 

This paper presents the design and implementation of a novel 

field programmable CRC computation circuit that is an ideal 
IP core for VLSI deployment. The aim was to explore an 

architecture where all the CRC parameters were fully 

programmable. This was achieved by deriving an array of 

processing cells to implement a matrix based computation 

technique. The circuit uses an embedded configuration 

controller designed for both standalone and runtime 

programmability of the CRC circuit. This enables different  

 

CRC polynomials and I/O port and processing data-path 

widths to be deployed. The architecture is also generic in its 

design and can be scaled to 64-, 128-, or 256-bits in the 
datapath, enabling support of throughput rates up to 40 Gb/s 

at 256-bits. The tradeoff between flexibility, performance and 

cost has been taken further than those enabled by traditional 

heterogeneous architectures based on microprocessor, DSP 

and FPGA technology. Domain specific and field 

programmable processing cores, such as the presented CRC 

circuit, provide tailored flexibility while allowing high 

performance and low hardware cost. In conjunction with an 

embedded custom specific configuration controller, the 

programming task of the logic array is reduced to specific 

high-level instructions, executed by setting parameter 

registers. Complex logic synthesis and place and route 
functions are not required to programme the circuit, as is the 

case with traditional FPGA technologies, consequently real 

runtime programmability is possible with a much reduced 

reconfiguration time and cost. Embedded domain specific 

programmable architectures present an opportunity for 

enhancing SoC designs that face performance and flexibility 

issues, as they strive to meet emerging design challenges 

imposed by ICT convergence. It is further anticipated that a 

physical oriented design methodology, such as a data-path 

compiler [17], can be used to optimize the regular structure 

of the programmable cell array, which could significantly 
increase the operational frequency while maintaining a low 

hardware cost. Such an optimized circuit represents an 

attractive hard macro for environments requiring low cost 

hardware flexibility, and in emerging areas such as iSCSI-

based SANs, where the flexibility to adopt emerging 

protocols offers a key advantage to vendors. 
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